Abstract
A precise model of the array response is required to maintain the performance of direction-of-arrival (DOA) estimation. When modeling errors are present or the sensor environment is time-varying, autocalibration becomes necessary. In this paper, the problem of phase autocalibration for uniform rectangular array (URA) geometries is considered. For the case with a single source, a simple and robust least-squares algorithm for joint 2-D DOA estimation and phase calibration is presented. When performing phase autocalibration with a URA, the phase and DOA parameters cannot be identified together without ambiguity. This problem is discussed and a suitable remedy is suggested. An approximate Cramér-Rao bound and analytical expressions for the mean squared error performance of the proposed estimator are presented. The proposed algorithm for phase autocalibration is extended for the case with multiple sources. The results are evaluated using a representative body of simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.