Abstract

The joins in the title are considered within two contexts: (I) the lattice of varieties of regular unary semigroups, and (II) the lattice of e-varieties (or bivarieties) of orthodox semigroups. It is shown that in each case the set of all such joins forms a proper sublattice of the respective join of the variety I of all inverse semigroups and the variety B of all bands; each member V of this sublattice is determined by V ∩ I and V ∩ B. All subvarieties of the join of I with the variety RB of regular bands are so determined. However, there exist uncountably many subvarieties (or sub-bivarieties) of the join I ∨ B, all of which contain I and all of whose bands are regular.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.