Abstract

AbstractWe show Exel’s tight representation of an inverse semigroup can be described in terms of joins and covers in the natural partial order. Using this, we show that the ${C}^{\ast } $-algebra of a finitely aligned category of paths, developed by Spielberg, is the tight ${C}^{\ast } $-algebra of a natural inverse semigroup. This includes as a special case finitely aligned higher-rank graphs: that is, for such a higher-rank graph $\Lambda $, the tight ${C}^{\ast } $-algebra of the inverse semigroup associated to $\Lambda $ is the same as the ${C}^{\ast } $-algebra of $\Lambda $.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.