Abstract

The mammalian beta-globin locus is a multigene locus containing several globin genes and a number of regulatory elements. During development, the expression of the genes changes in a process called "switching." The most important regulatory element in the locus is the locus control region (LCR) upstream of the globin genes that is essential for high-level expression of these genes. The discovery of the LCR initially raised the question how this element could exert its effect on the downstream globin genes. The question was solved by the finding that the LCR and activate globin genes are in physical contact, forming a chromatin structure named the active chromatin hub (ACH). Here we discuss the significance of ACH formation, provide an overview of the proteins implicated in chromatin looping at the beta-globin locus, and evaluate the relationship between nuclear organization and beta-globin gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.