Abstract

Dissimilar joining of sheet aluminum AA6061-T4 to cast magnesium AM60B was achieved by vaporizing foil actuator welding (VFAW). Three input energy levels were used (6, 8, and 10kJ), and as a trend, higher input energies resulted in progressively higher flyer velocities, more pronounced interfacial wavy features, larger weld zones, higher peel strengths, and higher peel energies. In all cases, weld cross section revealed a soundly bonded interface characterized by well-developed wavy features and lack of voids and continuous layers of intermetallic compounds (IMCs). At 10kJ input energy, flyer speed of 820m/s, peel strength of 22.4N/mm, and peel energy of 5.2J were obtained. In lap-shear, failure occurred in AA6061-T4 flyer at 97% of the base material’s peak tensile load. Peel samples failed along the weld interface, and the AM60B-side of the fracture surface showed thin, evenly-spaced lines of Al residuals which had been torn out of the base AA6061-T4 in a ductile fashion and transferred over to the AM60B side, indicating very strong AA6061-T4/AM60B bond in these areas. This work demonstrates VFAW’s capability in joining dissimilar lightweight metals such as Al/Mg, which is expected to be a great enabler in the ongoing push for vehicle weight reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.