Abstract

A novel method using a combination of surface three-dimensional structuring, silver nanoparticles and a silver-foam interlayer is developed for joining solid oxide fuel/electrolysis cell components at low temperature. Joints with a high mechanical strength of 24 MPa are obtained with this method already at 300 °C. The interfaces of a sealed assembly comprising ferritic stainless steel interconnect and nickel oxide-yttria stabilized zirconia (NiO-YSZ) support are analyzed by scanning electron microscopy and transmission electron microscopy to study the interfacial sintering mechanism. It is shown that the high strength of the joint is due to a combination of an optimized three-dimensional nickel/gold nanosheet array deposited on the substrates which facilitates mechanical interlocking, and a silver-foam interlayer which enhances the resistance to crack propagation. The long-term stability of the joint is evaluated by aging in a reducing atmosphere at 800 °C for 250 h. No defects indicating a possible failure are observed in the joint after this aging. An oxide layer forms along the silver/steel interface and parts of the steel are transformed to austenite due to nickel diffusion from the nanosheet array, but this does not deteriorate the joint stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.