Abstract
Abstract Metal–plastic composite tubular structures that combine the high strength and stiffness of metallic tubes with the lightweight and flexible properties of plastic tubes, exhibit considerable potential to provide lightweight structures with improved performance compared to conventional monolithic tubular parts. However, the lack of well-confirmed technologies for connecting metal–plastic composite tubes that can ensure good structural stability and strength has proven problematic in actual applications. In this study, an innovative mechanical joining process via a hydroformed threaded coupling is proposed to achieve the successful joining of a metal–plastic composite layered tube (CLT). For the threaded connection, the CLT with an internal thread to act as a sleeve and the coupling tube with an external thread to act as a screw were joined together. A three-layer CLT composed of AISI 304 stainless steel/polyvinyl chloride (PVC)/AISI 304 stainless steel was investigated by free bulging and thread hydroforming. For successful forming into a threaded CLT, the optimal loading path was designed using analytical forming pressure and numerical contracting stroke. The mechanical tests based on compression and lateral three-point bending tests provided several key indicators for the quantitative performance of the thread-coupled parts. The reliability and applicability of the threaded coupling confirmed that the proposed joining process has strong potential for successful utilization in connecting metal–plastic composite tubes for structural applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.