Abstract
Mixed linear models are a versatile and powerful tool for analysing data collected in experiments in several areas. A mixed model is a model with orthogonal block structure, OBS, when its variance–covariance matrix is of all the positive semi-definite linear combinations of known pairwise orthogonal orthogonal projection matrices that add up to the identity matrix. Models with commutative orthogonal block structure, COBS, are a special case of OBS in which the orthogonal projection matrix on the space spanned by the mean vector commutes with the variance–covariance matrix.Using the algebraic structure of COBS, based on Commutative Jordan algebras of symmetric matrices, and the Cartesian product we build up complex models from simpler ones through joining, in order to analyse together models obtained independently. This commutativity condition of COBS is a necessary and sufficient condition for the least square estimators, LSE, to be best linear unbiased estimators, BLUE, whatever the variance components. Since joining COBS we obtain new COBS, the good properties of estimators hold for the joined models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.