Abstract

A celebrated result of Ratner from the eighties says that two horocycle flows on hyperbolic surfaces of finite area are either the same up to algebraic change of coordinates, or they have no non-trivial joinings. Recently, Mohammadi and Oh extended Ratner's theorem to horocycle flows on hyperbolic surfaces of infinite area but finite genus. In this paper, we present the first joining classification result of a horocycle flow on a hyperbolic surface of infinite genus: a $\mathbb{Z}$ or $\mathbb{Z}^2$-cover of a general compact hyperbolic surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call