Abstract
In present times, the Internet of Things (IoT) is becoming the new era in technology by including smart devices in every aspect of our lives. Smart devices in IoT environments are increasing and storing large amounts of sensitive data, which attracts a lot of cybersecurity threats. With these attacks, digital forensics is needed to conduct investigations to identify when and where the attacks happened and acquire information to identify the persons responsible for the attacks. However, digital forensics in an IoT environment is a challenging area of research due to the multiple locations that contain data, traceability of the collected evidence, ensuring integrity, difficulty accessing data from multiple sources, and transparency in the process of collecting evidence. For this reason, we proposed combining two promising technologies to provide a sufficient solution. We used federated learning to train models locally based on data stored on the IoT devices using a dataset designed to represent attacks on the IoT environment. Afterward, we performed aggregation via blockchain by collecting the parameters from the IoT gateway to make the blockchain lightweight. The results of our framework are promising in terms of consumed gas in the blockchain and an accuracy of over 98% using MLP in the federated learning phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.