Abstract
We introduce the notion of a convex geometry extending the notion of a finite closure system with the anti-exchange property known in combinatorics. This notion becomes essential for the different embedding results in the class of join-semidistributive lattices. In particular, we prove that every finite join-semidistributive lattice can be embedded into a lattice S P( A) of algebraic subsets of a suitable algebraic lattice A. This latter construction, S P( A), is a key example of a convex geometry that plays an analogous role in hierarchy of join-semidistributive lattices as a lattice of equivalence relations does in the class of modular lattices. We give numerous examples of convex geometries that emerge in different branches of mathematics from geometry to graph theory. We also discuss the introduced notion of a strong convex geometry that might promise the development of rich structural theory of convex geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.