Abstract
We introduce the notion of Johnson pseudo-Connes amenability for dual Banach algebras. We study the relation between this new notion with the various notions of Connes amenability like Connes amenability, approximate Connes amenability and pseudo Connes amenability. We also investigate some hereditary properties of this new notion. We prove that for a locally compact group G,M(G) is Johnson pseudo-Connes amenable if and only if G is amenable. Also we show that for every non-empty set I,MI(C) under this new notion is forced to have a finite index. Finally, we provide some examples of certain dual Banach algebras and we study their Johnson pseudo-Connes amenability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.