Abstract
Embryonic stem (ES) cells are pluripotent cells with the capacity for unlimited self-renewal or differentiation. Inhibition of MAPK pathways enhances mouse ES cell pluripotency characteristics. Compared to wildtype ES cells, jnk2−/− ES cells displayed a much higher growth rate. To determine whether JNKs are required for stem cell self-renewal or differentiation, we performed a phosphorylation kinase array assay to compare mouse ES cells under LIF+ or LIF− culture conditions. The data showed that activation of JNKs was induced by LIF withdrawal. We also found that JNK1 or 2 phosphorylated Klf4 at threonines 224 and 225. Activation of JNK signaling and phosphorylation of Klf4 inhibited Klf4 transcription and transactivation activity. Importantly, jnk1−/− and jnk2−/− murine embryonic fibroblasts (MEFs) exhibited a significantly greater potency in the ability to increase the number of iPS colonies compared with jnk wildtype MEFs. Overall, our results demonstrated that JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.