Abstract

Inflammatory reactions and oxidative stress play critical roles in cerebral ischemic injuries. Microglia are activated after ischemic injury. Activated microglia produce neurotoxic proinflammatory factors and reactive oxygen species (ROS), which have been demonstrated closely related TLR2/4-NF-κB signal pathways. This study was to evaluate the effect of JLX001 against ischemic injury and investigate the mechanisms. The permanent middle cerebral artery occlusion (pMCAO) model was employed in rats. The neurobehavioral score, brain infarction rate, brain water content, pathological changes, immunohistochemical staining, biochemical index (T-AOC, SOD, and MDA), proinflammatory factors (IL-1β, TNF-α, and NO), expression of TLR2/4 and nuclear translocation of NF-κB p65 were determined. To explore probable underlying mechanism of the neuroprotective effect of JLX001, BV-2 cells were exposed to in oxygen-glucose deprivation (OGD) for 4h to mimic ischemic injury in vitro. The result showed that JLX001 significantly decreased neurological deficit score, infarct size, and brain edema, attenuated pathological changes, inhibited the activation of microglia, improved the process of oxidative stress, reduced the release of proinflammatory cytokines and downregulated TLR2/4-NF-κB signal pathway. Moreover, OGD reduced BV2 cell viability, induced oxidative damage, increased the release of proinflammatory factors and activated TLR2/4-NF-κB signal pathway, which was significantly reversed by the intervention of JLX001. This study demonstrates that JLX001 is effective in protecting the brain from ischemic injury, which may be mediated by regulating oxidative stress, inflammation and inhibiting TLR2/4-NFκB signal pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.