Abstract

Renal tubular epithelial cells (TECs) undergoing partial epithelial-mesenchymal transition (pEMT) during renal fibrosis has been recognized as a featuring and detrimental event. However, the mechanism for redirecting the cell fate of pEMT remains unclear. Here we mapped the temporal expression trajectories of a series of EMT-related molecules in renal fibrosis. It revealed a unique expression profile of N-cadherin of initial rising and late dropdown, which is distinct from that of other mesenchymal markers. The transcription factor Foxk1, which serves as a negative regulator of the N-cadherin gene, was induced by TGF-β1 but was tightly regulated in the presence of JNK-associated leucine zipper protein (JLP). The loss of JLP resulted in Foxk1 induction, leading to N-cadherin downregulation and compromised cell viability. We propose a novel axis consisting of JLP/Foxk1/N-cadherin in shaping the EMT program and suggest JLP as the checkpoint of the EMT continuum during renal fibrosis progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call