Abstract

Rings of oscillators with delayed pulse coupling are studied analytically, numerically, and experimentally. The basic regimes observed in such rings are rotating waves with constant interspike intervals and phase lags between the neighbors. We show that these rotating waves may destabilize leading to the so-called jittering waves. For these regimes, the interspike intervals are no more equal but form a periodic sequence in time. Analytic criterion for the emergence of jittering waves is derived and confirmed by the numerical and experimental data. The obtained results contribute to the hypothesis that the multijitter instability is universal in systems with pulse coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.