Abstract

This article proposes a jitter-aware decoupling capacitors placement optimization method that uses the genetic algorithm (GA). A novel method for defining the optimization target function in regard to power delivery network (PDN) and power source-induced jitter (PSIJ) optimization based on the GA-based tool is proposed. The proposed method can provide an optimum and economic solution for the number of decoupling capacitors to use in a PDN to reach the target impedance. Then, by modifying the optimization target function with our proposed method, an optimum solution of the number of decoupling capacitors regarding the PSIJ can be obtained. The PSIJ analytical expressions are derived in conjunction with a resonant cavity model that includes the coordinates of the decoupling capacitors and the PSIJ transfer function. The GA-based optimization algorithm with the proposed target function is first applied to optimize the number of decoupling capacitors regarding the PSIJ. Finally, the measured jitters from HSPICE simulation results are used to verify our optimization method such that both the simulated results and analytically calculated results support the efficiency of our proposed optimization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.