Abstract
This work explores the possibility of using Low Gain Avalanche Diodes (LGADs) for tracker-based experiments studying Charged Cosmic Rays (CCRs) in space. While conventional silicon microstrip sensors provide only spatial information about the charged particle passing through the tracker, LGADs have the potential to provide additional timing information with a resolution in the order of tens of picoseconds. For the first time, it has been demonstrated that an LGAD with an active area of approximately 1 cm2 can achieve a jitter of less than 40 ps. A comparison of design and gain layers is carried out to understand which provides the best time resolution. For this purpose, laboratory measurements of sensors’ electrical properties and gain using LED and an Infrared laser, as well as their jitter, were performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.