Abstract
The delay-boundary prediction algorithms currently implemented by transport protocols are lowpass filters based on autoregressive and moving average (ARMA) models. However, previous studies have revealed a fractal-like structure of delay sequences, which may not be well suited to ARMA models. We propose a novel delay-boundary prediction algorithm based on a deviation-lag function (DLF) to characterize the end-to-end delay variations. Compared to conventional algorithms derived from ARMA models, the new algorithm can adapt to delay variations more rapidly and share the delay's robust high-order statistical information (jitter deviation) among competing connections along a common network path. Preliminary experiments show that it outperforms Jacobson's (1988) algorithm, which is based on an ARMA model, by significantly reducing the prediction error rate. To show the practical feasibility of the DLF algorithm, we also propose a skeleton implementation model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.