Abstract

Systematic detailed non-linear finite element (FE) analyses are described for semi-elliptical surface cracks in plates under tension. Limit load solutions are obtained from the FE J results through the reference stress method. The results show that the type of the relationship between J and the limit load mainly depends on the ratio a/ t, where a is the crack depth and t the thickness of the plate. For a/ t≤0.5, J for any position along the crack front can be predicted by the reference stress method using a single limit load value, except for the points very close to the plate surface. For a/ t=0.8, J can only be approximately estimated because no single limit load value can be found to satisfy all the FE J solutions along the crack front. However, for all cases considered, the maximum J value along the crack front can still be predicted by using the global limit load in the reference stress method. The limit load data obtained from this work can be well predicted by a global limit load equation developed by Goodall and Webster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.