Abstract

Every year in the United States conifers are purchased to serve as Christmas trees in homes where they emit volatile organic compounds (VOCs) to the indoor environment. Although many studies have measured the ecosystem-level emissions of VOCs from conifers outdoors (characterizing monoterpene, isoprene, and aldehyde emissions), little is known about VOC emission rates once a conifer is brought indoors. Using a proton transfer reaction-mass spectrometer we characterized the VOCs emitted from a freshly cut Douglas Fir for 17 days in an environmentally controlled chamber. Ozone injections were also performed to analyze indoor chemistry that may occur. Introduction of the tree into the chamber increased the response of 52 mass spectra signals detected by the PTR-MS by at least 500 counts per second (cps) compared to background levels, with concentrations sharply decreasing after the first two days. Monoterpenes were emitted from the tree at a rate of 12.4 mg h−1 the first day and fell to 1 mg h−1 by day three. Overall, monoterpene emissions from this Douglas fir were initially comparable to other strong indoor monoterpene sources (fragranced products and air fresheners) but decayed quickly and, within days, were smaller than other common indoor sources. Addition of ozone to the chamber resulted in decreased monoterpene concentrations that coincided with modest increases in formaldehyde. Four other emitted VOCs were tentatively identified due to their large increase within the first few hours of the tree placed in the chamber, behavior during ozonation, or pattern of accumulation over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call