Abstract

Matte, porous, and weakly bound paint layers, typically found in modern/contemporary art, represent an unsolved conservation challenge. Current conservation practice relies on synthetic or natural adhesives that can alter dramatically the optical properties of paints. Alternatively, we propose a novel nanostructured consolidant based on starch, a renewable natural polymer. We synthesized starch nanoparticles (SNPs) to boost their penetration into the porous painted layers; upon solvent evaporation, the particles were expected to adhere to the pigments thanks to their large surface area and abundant -OH groups. The SNPs were formulated through a bottom-up approach, where gluten-removed Jin Shofu wheat starch was gelatinized and then precipitated in a nonsolvent. The low gelatinization temperature of wheat starch is likely key to favor disassembly in alkali and reassembly in the nonsolvent. The synthesis conditions can be tuned to obtain amorphous SNPs of ca. 50 nm with acceptable polydispersity. The particles swell in water to form nanosized gel-like fractal domains (as observed with cryogenic electron microscopy), formed by the organization of smaller units in polymer-rich and -deficient regions. Aqueous and hydroalcoholic particles' dispersions were assessed on aged ultramarine blue mock-ups that mimic degraded modern/contemporary paints. The consolidation effectiveness was evaluated with a specifically designed in-house protocol: the SNPs distribute across the paint section and strongly increase pigments' cohesion while preserving the original optical properties of the painted layer, as opposed to dispersions of bulk starch that simply accumulate on the paint surface, forming superficial glossy films. The Jin Shofu SNPS proved to be a new promising tool for the consolidation of weakened paintings, opening perspectives in the formulation and application of consolidants for modern and contemporary art.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.