Abstract
BackgroundHepatic fibrosis (HF) is an essential stage in the progression of different chronic liver conditions to cirrhosis and even hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) plays a crucial role in the progression of HF. IFN- γ/Smad7 pathway can inhibit HSCs activation, while TGF-β1/CUGBP1 pathway can inhibit IFN-γ/Smad7 pathway transduction and promote HSCs activation. Thus, inhibiting the TGF-β1/CUGBP1 pathway and activating the IFN-γ/Smad7 pathway reverses HSCs activation and inhibits HF. Jiawei Taohe Chengqi Decoction (JTCD) was derived from the Taohe Chengqi Tang in the ancient Chinese medical text titled “Treatise on Febrile Diseases”. We found several anti-HF components in JTCD including ginsenoside Rb1 and others, but the specific mechanism of anti-HF in JTCD is not clear. PurposeTo elucidate the specific mechanism by which JTCD reverses HF by inhibiting the activation of HSCs, and to establish a scientific foundation for treating HF with Traditional Chinese medicine (TCM). MethodsWe constructed a CCl4-induced mice HF model in vivo and activated human hepatic stellate cell line (LX-2) with TGF-β1 in vitro, after which they were treated with JTCD and the corresponding inhibitors. We examined the expression of pivotal molecules in the two pathways mentioned above by immunofluorescence staining, Western blotting and RT-PCR. ResultsJTCD attenuated liver injury and reduced serum ALT and AST levels in mice. In addition, JTCD attenuated CCl4-induced HF by decreasing the expression of α-SMA, COL1A1 and other markers of HSCs activation in mice liver tissue. Moreover, JTCD effectively suppressed the levels of TGF-β1, p-Smad3, p-p38MAPK, p-ATF2, and CUGBP1 in vivo and in vitro and upregulated the levels of IFN-γ, p-STAT1, and Smad7. Mechanically, after using the inhibitors of both pathways in vitro, we found that JTCD inhibited the activation of HSCs by restoring the balance of the TGF-β1/CUGBP1 and IFN-γ/Smad7 pathways. ConclusionWe demonstrated that JTCD inhibited HSCs activation and reversed HF by inhibiting the TGF-β1/CUGBP1 signalling pathway and upregulating the IFN-γ/Smad7 signalling pathway. Moreover, we have identified specific links where JTCD interferes with both pathways to inhibit HSCs activation. JTCD is an effective candidate for the clinical treatment of HF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.