Abstract
BackgroundMetabolic disorders in polycystic ovary syndrome (PCOS) patients have attracted increasing attention, and nonalcoholic fatty liver disease (NAFLD) in particular has been the focus of much research due to its high incidence and potential harm in patients with PCOS. However, little is known about whether PCOS is associated with more severe NAFLD histopathology. Although Jiawei Qi Gong Wan (JQGW) is widely used clinically, its specific effects and mechanisms on the liver remain unclear. PurposeThe aim of this study was to explore the mechanism of JQGW in improving metabolic abnormalities in the liver in PCOS mice in order to support the development of therapies to prevent PCOS complications. MethodsA mouse model of PCOS was established by subcutaneously implanting letrozole tubes. The effect of JQGW on liver metabolism in mice was observed by measuring biochemical indicators in serum. Liver morphological changes were observed using hematoxylin and eosin staining along with Sirius red staining, while Western blotting and qRT-PCR were used to quantify the expression of genes and proteins related to liver fibrosis and inflammation processes. Network pharmacology was used to analyze the key factors that JQGW may target in improving liver fibrosis in PCOS mice, and the results were verified by Western blotting of liver tissue from PCOS mice. ResultsPCOS mice had obvious liver metabolic dysfunction, inflammation, and fibrosis, all of which could be reversed by JQGW. Network pharmacology functional enrichment revealed that the overlapping targeted genes were enriched mainly in insulin resistance-related pathways and androgen-related pathways. We verified related proteins and found that JQGW improved liver fibrosis and inflammation in PCOS mice mainly by regulating the Akt2-FoxO1 and YAP/TAZ signaling pathways. ConclusionJQGW can improve liver metabolic function in a letrozole-induced PCOS mouse model by inhibiting liver fibrosis and inflammation, and it acts mechanistically by regulating the Akt2-FoxO1 and YAP/TAZ signaling pathways. Our findings thus provide a valuable reference for the advancement of therapeutic strategies aimed at addressing PCOS patients with abnormal liver metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.