Abstract

Synchrotron powder X-ray diffraction and scanning electron microscopy examinations of manganese oxide concretions/nodules (~0.3–1.0 mm diameter) from ODP Site 1262 on Walvis Ridge in the Southeastern Atlantic Ocean revealed that they consist primarily of the layered Mn oxide phase jianshuiite [(Mg,Mn,Ca)Mn34+O7·3H2O]. The nodules are from an interval with severe carbonate dissolution that represents the Paleocene/Eocene (P/E) thermal maximum (~55.8 Ma). Most nodules from the middle of the carbonate dissolution interval contain internal open space, and consist almost entirely of euhedral plate-like jianshuiite crystals, 2–4 μm in diameter and ~0.1–0.5 μm thick. Backscattered electron images and energy-dispersive X-ray analyses revealed stacks of interleaved Al-rich and Al-poor jianshuiite crystals in some nodules. The crystals in other nodules contain predominantly Mg (with trace K and Al) in addition to Mn and O, making them near “end-member” jianshuiite. Rietveld refinements in space group R 3 confirmed the isostructural relationship between jianshuiite and chalcophanite, with Mg occupying the interlayer position above and below the vacant sites in the Mn/O octahedral sheet, and coordinated to 3 octahedral layer O atoms (1.94 A) and 3 interlayer water O atoms (2.13 A). Final refined occupancy factors suggest that small quantities of Ni and possibly Mn2+ are located on the Mg site. The transient appearance of the Mg-rich birnessite-like phase jianshuiite, probably abiotically produced, must indicate an exceptional transient change in the chemistry of the pore fluids within deep ocean sediments directly following the P/E boundary, possibly as a result of decreasing oxygen levels and pH, followed by a return to pre-event conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.