Abstract

This paper demonstrates the application of the Johnson–Holmquist II (JH-2) model with correlated and validated parameters to simulate the behavior of a sandstone. The JH-2 model is used to simulate various tests, including single-element tests, structural quasi-static uniaxial and triaxial compression tests, and the split Hopkinson pressure bar test. Additionally, the model is used to simulate drop-weight impact test using a ball bearing and two loading scenarios involving small-scale blasting and projectile impacts. Quantitative and qualitative comparisons demonstrate that the JH-2 model agrees well with both experimental and analytical results. Limitations of the model are also highlighted, particularly for quasi-static problems, as the model was originally developed for high-strain-rate simulations. Ultimately, this study demonstrates that the JH-2 rock constitutive model can obtain reasonable results for a material other than the material for which the model was originally correlated and validated. This paper provides valuable guidance for modeling and simulating sandstone and other rock materials subjected to dynamic loadings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.