Abstract

QSOs' emission lines arise from highest velocity (approximately 10000 km/s), dense gas within approximately 0.1 parsec of the central engine, out to low-velocity, low-density gas at great distances from the host galaxy. In radio-loud QSOs there are clear indications that the distribution and kinematics of emission-line gas are related to the symmetry axis of the central engine, as defined by the radio jet. These jets originate at nuclear distances < 0.1 pc --- similar to the highest-velocity emission line gas. There are two ways we can investigate the different environments of radio-loud and radio-quiet QSOs, i.e., those with and without powerful radio jets. One is to look for optical-UV spectroscopic differences between radio-loud and radio-quiet QSOs. The other is to investigate dependences of spectroscopic properties on properties of the powerful jets in radio-loud QSOs. Here we summarize the spectroscopic differences between the two classes, and present known dependences of spectra on radio core-dominance, which we interpret as dependences on the angle of the central engine to the line-of-sight. We speculate on what some of the differences may mean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.