Abstract

Recent surge of interest towards congestion control that relies on single-link feedback (e.g., XCP, RCP, MaxNet, EMKC, VCP), suggests that such systems may offer certain benefits over traditional models of additive packet loss. Besides topology-independent stability and faster convergence to efficiency/fairness, it was recently shown that any stable single-link system with a symmetric Jacobian tolerates arbitrary fixed, as well as time-varying, feedback delays. Although delay-independence is an appealing characteristic, the EMKC system developed in exhibits undesirable equilibrium properties and slow convergence behavior. To overcome these drawbacks, we propose a new method called JetMax and show that it admits a low-overhead implementation inside routers (three additions per packet), overshoot-free transient and steady state, tunable link utilization, and delay-insensitive flow dynamics. The proposed framework also provides capacity-independent convergence time, where fairness and utilization are reached in the same number of RTT steps for a link of any bandwidth. Given a 1mb/s, 10gb/s, or googol (10^1^0^0) bps link, the method converges to within 1% of the stationary state in six RTTs. We finish the paper by comparing JetMax's performance to that of existing methods in ns2 simulations and discussing its Linux implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.