Abstract

How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that AGN can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (eg. Centaurus A). Here we present CO observations of 3C 285 and Minkowski Object (MO), which are examples of jet-induced star formation. A spot (named 09.6) aligned with the 3C 285 radio jet, at a projected distance of ~70 kpc from the galaxy centre, shows star formation, detected in optical emission. MO is located along the jet of NGC 541 and also shows star formation. To know the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 09.6 and MO with the IRAM-30m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy. The molecular gas appears to be in a compact reservoir. In addition, no kinematic signature of a molecular outflow is detected by the 30m-telescope. Interestingly, 09.6 and MO are not detected in CO. The cold gas mass upper limits are consistent with a star formation induced by the compression of dense ambient material by the jet. The depletion time scales are of the order of and even smaller than what is found in 3C 285, NGC 541 and local spiral galaxies (10^9 yr). The molecular gas surface density in 09.6 follows a Schmidt-Kennicutt law if the emitting region is very compact, while MO is found to have a much higher SFE (very short depletion time). Higher sensitivity and spatial resolution are necessary to detect CO in the spots of star formation, and map the emission in these jet-induced star forming regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.