Abstract

Many experimental analyses separate events into exclusive jet bins, using a jet algorithm to cluster the final state and then veto on jets. Jet clustering induces logarithmic dependence on the jet radius R in the cross section for exclusive jet bins, a dependence that is poorly controlled due to the non-global nature of the clustering. At jet radii of experimental interest, the leading order (LO) clustering effects are numerically significant, but the higher order effects are currently unknown. We rectify this situation by calculating the most important part of the next-to-leading order (NLO) clustering logarithms of R for any 0-jet process, which enter as $O(\alpha_s^3)$ corrections to the cross section. The calculation blends subtraction methods for NLO calculations with factorization properties of QCD and soft-collinear effective theory (SCET). We compare the size of the known LO and new NLO clustering logarithms and find that the impact of the NLO terms on the 0-jet cross section in Higgs production is small. This brings clustering effects under better control and may be used to improve uncertainty estimates on cross sections with a jet veto.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.