Abstract
There is a strong drive towards utilizing oxygenated biofuels in blends with existing fossil fuels. Improving the kinetic modeling of the oxidation of these bio-derived oxygenates requires further investigation of their key stable intermediates such as the aldehydes. In this study, an experimental and chemical kinetic modeling investigation of propanal oxidation was carried out. Experiments were conducted in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and ambient pressures. Stable species concentration profiles were measured in the jet stirred reactor and laminar flame speeds were measured. A detailed chemical kinetic reaction model was validated using the present experimental results and existing literature data. The model was used also to provide insight into the controlling reaction pathways for propanal oxidation in both the low- and high-temperature kinetic regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.