Abstract

Low-melting-point Ga-xSn eutectic composites and natural silicate mineral powders were used as the electrode and solid-state electrolyte, respectively, in all-solid-state batteries for green energy storage systems. The influences of the Sn content in the Ga-xSn composite electrode on the electrochemical performance of the batteries were evaluated, and liquid composites with a Sn concentration of up to 30 wt.% demonstrated suitability for electrode fabrication through dip coating. Sodium-enriched silicate was synthesized to serve as the solid-state electrolyte membrane because of the abundance of water molecules in its interlayer structure, enabling ion exchange. The battery capacity increased with the Sn content of the Ga-xSn anode. The formation of intermetallic compounds and oxides (CuGa2, Ga2O3, Cu6Sn5, and SnO2) resulted in a high charge-discharge capacity and stability. The Ga-Sn composite electrode for all-solid-state batteries exhibits a satisfiable capacity and stability and shows potential for jet-printed electrode applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call