Abstract
Soft interactions with high-energy jets are explored in radial coordinates which exploit the approximately conformal behavior of perturbative gauge theories. In these coordinates, the jets, approximated by Wilson lines, become static charges in Euclidean AdS. The anomalous dimension of the corresponding Wilson line operator is then determined by the potential energy of the charges. To study these Wilson lines we introduce a ``conformal gauge'' which does not have kinetic mixing between radial and angular directions, and show that a number of properties of Wilson lines are reproduced through relatively simple calculations. For example, certain nonplanar graphs involving multiple Wilson lines automatically vanish. We also discuss the linear growth of the charges' imaginary potential energy with separation, and a relationship between Wilson line diagrams and Witten diagrams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.