Abstract

The breach of a steel column target (Steel 45, 120 mm in diameter) by an inward-cutting circular shaped charge is considered. The jet penetration process is simulated by a 3D model run in the ANSYS/LS-DYNA program. The results are compared with actual tests, where photographs of the jet penetration process allowed observation of detonation forms, timing of the jets arising at the cross section of the detonation points, and detonation wave collision points. Different penetration effects are observed with 2-, 4-, or 8-point symmetrical synchronous initiation of detonation. With 2-point initiation, the circular-shaped charge can basically cut off the steel column target, but 4- and 8-point initiation is more effective. A greater number of detonation points provides more detonation wave collision points, higher jet velocity, earlier jet-target contact, greater penetration depth, and more rapid cutting of the target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call