Abstract

Diagnosis of combustion instability in a solid rocket motor usually involves in-situ measurements of pressure in the combustor, a harsh environment that poses challenges in instrumentation and measurement. This paper explores the possibility of remote diagnosis of combustion instability based on far-field measurements of rocket jet noise. Because of the large pressure oscillations associated with combustion instability, the wave process in the combustor has many characteristic features of nonlinear acoustics such as shocks and limit cycles. Thus the remote detection and characterization of instability can be performed by listening for the tell-tale signs of the combustor nonlinear acoustics, buried in the jet noise. Of particular interest is the choice of nonlinear acoustic measure (e.g., among skewness, bispectra, and Howell-Morfey Q/S) that best brings out the acoustic signature of instability from the jet noise data. Efficacy of each measure is judged against the static test data of two tactical motors (one stable, the other unstable).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call