Abstract
Imperfectly expanded jet flows are known to have additional noise sources known as Screech and broadband shock-associated noise. They are generated by the interaction between the instability waves that propagate from the lip of the nozzle and the shock cell structures. In this study, thorough experimental investigations were carried out on chevron nozzles to assess the importance of chevron parameters such as the chevron count and chevron penetration angle on the pressure field emitted by the jet. Data were acquired in the state-of-the-art aeroacoustic facility at the University of Bristol. Acoustic measurements such as pressure spectra, directivity and overall sound pressure levels along with near-field measurements were acquired for jet Mach numbers ranging from M = 1.1–1.4. Fourier-based and Wavelet-based analyses were used to highlight the different features of the various tested nozzles. Wavelet decomposition results highlight that the presence of the chevrons reduce the acoustic noise especially at a higher axial distance with increased levels of noise reduction achieved by chevron nozzle with deep penetration angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.