Abstract
The erosion of lunar soil by rocket exhaust plumes is investigated experimentally. This has identified the diffusion-driven flow in the bulk of the sand as an important but previously unrecognized mechanism for erosion dynamics. It has also shown that slow regime cratering is governed by the recirculation of sand in the widening geometry of the crater. Scaling relationships and erosion mechanisms have been characterized in detail for the slow regime. The diffusion-driven flow occurs in both slow and fast regime cratering. Because diffusion-driven flow had been omitted from the lunar erosion theory and from the pressure cratering theory of the Apollo and Viking era, those theories cannot be entirely correct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.