Abstract

We propose to model hadronization of parton showers in QCD jets through a hybrid approach involving quark recombination and string fragmentation. This is achieved by allowing gluons at the end of the perturbative shower evolution to undergo a non-perturbative splitting into quark and antiquark pairs, then applying a Monte-Carlo version of instantaneous quark recombination, and finally subjecting remnant quarks (those which have not found a recombination partner) to Lund string fragmentation. When applied to parton showers from the PYTHIA Monte Carlo event generator, the final hadron spectra from our calculation compare quite well to PYTHIA jets that have been hadronized with the default Lund string fragmentation. Our new approach opens up the possibility to generalize hadronization to jets embedded in a quark gluon plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call