Abstract

Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sqrt{s_{mathrm{NN}}} = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT region, while they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation.

Highlights

  • Jet fragmentation transverse momentum (√jT) distributions are measured in proton-proton and proton-lead (p-Pb) collisions at sNN = 5.02 TeV with the ALICE experiment at the LHC

  • Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region

  • At high jT the yield increases and the distributions become wider with increasing pT, jet as indicated by the ratios of the jT distributions shown in the bottom panel

Read more

Summary

Introduction

Jet fragmentation transverse momentum (√jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN = 5.02 TeV with the ALICE experiment at the LHC. Herwig and Pythia 8 based models describe the data well for the higher jT region, while they underestimate the lower jT region. Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation. JT has been studied using two-particle correlations where jT is calculated for particles with respect to the highest transverse momentum particle in each event instead of reconstructed jet.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call