Abstract

We study the fragmentation of a jet propagating in a dense quark-gluon plasma. Using a leading, double-logarithmic approximation in perturbative QCD, we compute for the first time the effects of the medium on the vacuum-like emissions. We show that, due to the scatterings off the plasma, the in-medium parton showers differ from the vacuum ones in two crucial aspects: their phase-space is reduced and the first emission outside the medium can violate angular ordering. We compute the jet fragmentation function and find results in qualitative agreement with measurements at the LHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.