Abstract

Abstract This investigation aims to present the jet mixing characteristics and thrust variations of the subsonic jet employed with plain triangular tab and semi-circular corrugated tab by numerical simulation. A triangular tab with semi-circular corrugations is used in this regard at the exit plane of a convergent nozzle, to study the behavior of the jet and its structure. The near jet flow field is studied for different Mach numbers of 0.6, 0.8 and 1, and the comparisons were done for the jet employed with plain triangular tab. To validate the numerical results, experimental validation is carried out for 0.6 Mach jet. The thrust and the potential core length of any jet depend mainly on the percentage of blockage ratio. Since the relationship between the thrust and blockage ratio is such that, the blockage ratio increases, the thrust and the potential core length decreases and vice-versa. The blockage ratio is kept 8.27 % for both the corrugated and plain triangular tabs. From the results, it is found that the Potential core length of the free jet is cut down to 66 % by the jet employed with plain triangular tab, whereas it is 64.5 % for the corrugated tab enabled jet. It is also concluded that the corrugated tab enhances the thrust by 4.43 % for the same blockage ratio and increases potential core length by 3.33 % when compared with the plain triangular tab. This increase in thrust is there by an added advantage of this investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call