Abstract
Gas compression with a liquid jet occurs isothermally and hence with minimum work. Performance characteristics of the liquid jet gas pump (efficiency and compression ratio versus inlet volumetric flow ratio) are predicted accurately by a one-dimensional analysis providing the mixing zone remains in the throat. Jet breakup was investigated to enable prediction of required throat length and to improve efficiency. Effects of throat length, nozzle contour and spacing, nozzle-throat area ratio (0.15 to 0.45), jet velocity and suction pressure were investigated. Optimum throat lengths were found; corresponding efficiencies exceed 40 percent. Two jet breakup flow regimes were found: impact and jet disintegration. For the impact regime, jet breakup length-depends on inlet velocity ratio, jet Reynolds number and nozzle-to-throat area ratio. Optimum throat lengths were found to be an empirical function of nozzle-to-throat area ratio and ranged from 12 to 32 throat dia. These results, coupled with the one-dimensional model, permit design of efficient liquid jet gas pumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.