Abstract

Tidal disruption events (TDE) in which a star is devoured by a massive black hole at a galac- tic center pose a challenge to our understanding of accretion processes. Within a month the accretion rate reaches super-Eddington levels. It then drops gradually over a time scale of a year to sub-Eddington regimes. The initially geometrically thick disk becomes a thin one and eventually an ADAF at very low accretion rates. As such, TDEs explore the whole range of accretion rates and configurations. A challenging question is what the corresponding light curves of these events are. We explore numerically the disk luminosity and the conditions within the inner region of the disk using a fully general relativistic slim disk model. Those conditions determine the magnitude of the magnetic field that engulfs the black hole and this, in turn, determines the Blandford-Znajek jet power. We estimate this power in two different ways and show that they are self-consistent. We find, as expected earlier from analytic argu- ments (Krolik & Piran 2012), that neither the disk luminosity nor the jet power follows the accretion rate throughout the disruption event. The disk luminosity varies only logarithmi- cally with the accretion rate at super-Eddington luminosities. The jet power follows initially the accretion rate but remains a constant after the transition from super- to sub- Eddington. At lower accretion rates at the end of the MAD phase the disk becomes thin and the jet may stop altogether. These new estimates of the jet power and disk luminosity that do not simply follow the mass fallback rate should be taken into account when searching for TDEs and analysing light curves of TDE candidates. Identification of some of the above mentioned transitions may enable us to estimate better TDE parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call