Abstract

This study was conducted to compare random regression models for third order Ali Schaeffer (AS), Wilmink (W) and Legendre polynomials (L) on estimation of genetic parameters for first lactation milk yield in Jersey cows. For this aim, data used in this study were 6387 official milk yield records from monthly recording of 686 first lactations between 1996 and 2011 in Karakoy Agricultural State Farm, Samsun (Turkey). In this study, (co)variance components, heritability for first lactation test day milk yields (TDMY) and genetic correlations among these TDMYs were estimated by using DFREML statistical package under DXMRR option. To compare the models, -2LogL, Akaike’s information criterion (AIC), Bayesian information criterion (BIC), Residual variances (RV) and Log likelihood values were used. Heritabilities (0.08 to 0.28), additive genetic correlations (0.68 to 0.99) and phenotypic correlations (0.21 to 0.66) were estimated by AS(4,4) random regression model which had the lowest AIC and BIC values. As a result, it was decided that the AS(4,4) random regression model can be used for management decisions and genetic evaluation of Jersey cows for milk production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.