Abstract
Jensen's inequality f( EX) ≤ Ef( X) for the expectation of a convex function of a random variable is extended to a generalized class of convex functions f whose domain and range are subsets of (possibly) infinite-dimensional linear topological spaces. Convexity of f is defined with respect to closed cone partial orderings, or more general binary relations, on the range of f. Two different methods of proof are given, one based on geometric properties of convex sets and the other based on the Strong Law of Large Numbers. Various conditions under which Jensen's inequality becomes strict are studied. The relation between Jensen's inequality and Fatou's Lemma is examined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.