Abstract

We investigate how basic probability inequalities can be extended to an imprecise framework, where (precise) probabilities and expectations are replaced by imprecise probabilities and lower/upper previsions. We focus on inequalities giving information on a single bounded random variable X, considering either convex/concave functions of X (Jensen's inequalities) or one-sided bounds such as (X≥c) or (X≤c) (Markov's and Cantelli's inequalities). As for the consistency of the relevant imprecise uncertainty measures, our analysis considers coherence as well as weaker requirements, notably 2-coherence, which proves to be often sufficient. Jensen-like inequalities are introduced, as well as a generalisation of a recent improvement to Jensen's inequality. Some of their applications are proposed: extensions of Lyapunov's inequality and inferential problems. After discussing upper and lower Markov's inequalities, Cantelli-like inequalities are proven with different degrees of consistency for the related lower/upper previsions. In the case of coherent imprecise previsions, the corresponding Cantelli's inequalities make use of Walley's lower and upper variances, generally ensuring better bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.