Abstract
The biomass and abundance of large jellyfish (Cnidaria: Scyphozoa, Hydrozoa) was estimated and their seasonal and interannual dynamics was studied based on the data of trawl surveys conducted by the Pacific Research Fisheries Center (TINRO Center) in the Sea of Okhotsk, Bering Sea, Sea of Japan, and the Northwestern Pacific Ocean (NWPO) in 1991–2009. Most of the jellyfish biomass (over 95%) in the Sea of Okhotsk, Bering Sea, and NWPO was formed by Chrysaora spp., Cyanea capillata, Aequorea spp., Phacellophora camtschatica, and Aurelia limbata. The same species along with Calycopsis nematophora predominated in abundance in the Bering Sea and NWPO, while Ptychogena lactea, C. capillata, and Chrysaora spp. were most abundant in the Sea of Okhotsk. In the northwestern Sea of Japan, Aurelia aurita, C. capillata, and Aequorea spp. predominated both in abundance and biomass. Generally, the jellyfish abundance reached the highest values in the summer and fall and decreased abruptly in the winter. Meanwhile, the seasonal dynamics proved to be specific for each species and were manifested in some of them by reaching maximum values at various periods of the warm season, whereas the other (Tima sachalinensis and P. lactea) showed the reverse pattern of seasonal variations, with the highest abundance in cold months. Jellyfish biomass and abundance varied greatly from year to year, which was related to the short lifecycle and alternation between sexual and asexual generations, in which reproductive success was predetermined by various environmental factors. In the fall, year-to-year fluctuations of the relative biomass could increase by ten times. In 1991–2009, it varied from 200 to 2000 kg/km2 in the northern Sea of Okhotsk, from 500 to 4200 kg/km2 in the northwestern Bering Sea, and from 300 to 3700 kg/km2 in the southwestern Bering Sea. Taking the jellyfish abundance estimates into account, along with the vertical distribution and the seasonal dynamics, the overall biomass of large species that occurred in trawl catches in Far Eastern seas and adjacent Pacific waters during the warm season could reach 13.0–15.0 million tons, of which up to about 6.0 million tons would be concentrated in the western Bering Sea and 5.5–6.0 million tons in the Sea of Okhotsk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.