Abstract

The fabrication of hydrogels with well-defined structure and high mechanical strength has become a challenging and fascinating topic. The aim of this study is to develop a new method for fabricating hydrogels with high mechanical strength by utilizing the well-developed structure of biological gels. We firstly studied the mechanical properties and microstructure of a biological gel—the mesogloea of edible jellyfish Rhopilema esculenta Kishinouye (JF gel). JF gel has much higher mechanical strength than normal synthetic hydrogels due to its layered porous structure with pore walls consisting of nano-structured layers and fibers. We have also synthesized hydrogels by radiation-induced polymerization and crosslinking and found that they are distinctly stronger than those produced by the classical thermal polymerization using a crosslinking agent. When a synthetic gel is incorporated into JF gel by the radiation-induced polymerization and crosslinking of a hydrophilic monomer, a novel type of hybrid hydrogel with very high mechanical strength results. The compressive and tensile strengths of the hybrid hydrogels are generally several times to more than ten times higher than those of JF gel and the corresponding component synthetic gels. The hybrid gels combine the well-developed structure of biological jellyfish gel and the unique microstructure of the synthetic gel produced by the radiation method, and strong interactions between the two networks are formed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.