Abstract
Conditioning, belief update and revision are important tasks for designing intelligent systems. Possibility theory is among the powerful uncertainty theories particularly suitable for representing and reasoning with uncertain and incomplete information. This paper addresses an important issue related to the possibilistic counterparts of Jeffrey's rule of conditioning. More precisely, it addresses the existence and uniqueness of the solutions computed using the possibilistic counterparts of the so-called kinematics properties underlying Jeffrey's rule of conditioning. We first point out that like the probabilistic framework, in the quantitative possibilistic setting, there exists a unique solution for revising a possibility distribution given the uncertainty bearing on a set of exhaustive and mutually exclusive events. However, in the qualitative possibilistic framework, the situation is different. In particular, the application of Jeffrey's rule of conditioning does not guarantee the existence of a solution. We provide precise conditions where the uniqueness of the revised possibility distribution exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.