Abstract
Designing a JEE (Java Enterprise Edition)-based enterprise application capable of achieving its performance objectives is rather hard. Predicting the performance of this type of systems at the design level is difficult and sometimes not viable, because this requires having precise knowledge of the expected load conditions and the underlying software infrastructure. Besides, the requirement for rapid time-to-market leads to postpone performance tuning until systems are developed, packaged and running. In this paper we present a novel approach for automatically detecting performance problems in JEE-based applications and, in turn, suggesting courses of actions to correct them. The idea is to allow developers to smoothly identify and eradicate performance anti-patterns by automatically analyzing execution traces. The approach has been implemented as a tool called JEETuningExpert, and validated using three well-known JEE reference applications. Specifically, we evaluated the effectiveness of JEETuningExpert for detecting performance problems, measured the overhead imposed by online monitoring each application and the improvements were achieved after following the suggested corrective actions. These results empirically showed that the refactored applications are 40.08%, 76.94% and 61.13% faster, on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.